A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection.

نویسندگان

  • Neal S Gould
  • Carl W White
  • Brian J Day
چکیده

Sulfur mustards (SMs) have been used as warfare agents since World War I and still pose a significant threat against civilian and military personnel. SM exposure can cause significant blistering of the skin, respiratory injury, and fibrosis. No antidote currently exists for SM exposure, but recent studies, using the SM analog 2-chloroethyl ethyl sulfide (CEES), have focused on the ability of antioxidants to prevent toxicity. Although antioxidants can prevent CEES-induced toxicity, the mechanisms by which these compounds are effective against SM agents are largely unknown. Using human bronchial epithelial (16HBE) cells and primary small airway epithelial cells, we show that CEES causes a significant increase in mitochondrial dysfunction as early as 4 h, which is followed by increases in mitochondrial reactive oxygen species (ROS), peaking 12 h after exposure. We also have identified a catalytic antioxidant metalloporphyrin that can rescue airway cells from CEES-induced toxicity when added 1 h after CEES exposure. In addition, the cytoprotective effects of the catalytic antioxidant are associated with correcting mitochondrial dysfunction ROS, DNA oxidation, and decreases in intracellular GSH. These findings suggest a role for oxidative stress in CEES toxicity and provide a rationale to investigate antioxidants as rescue agents in SM exposures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or "half-mustard gas," are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells...

متن کامل

Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective a...

متن کامل

Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line

In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...

متن کامل

Critical role of GSH in Sulfur Mustard-induced Oxidative Stress and Cytotoxicity in Human Skin Fibroblast Cell Line

In this study the role of glutathione (GSH) in sulfur mustard -induced oxidative stress and cytotoxicity, in human skin fibroblast cell line (HF2FF) was evaluated. Sulfur mustard-induced superoxide radical and hydrogen peroxide formation were evaluated by determination of superoxide dismutase and catalase activity in cell lysate. The cytotoxicity of sulfur mustard was estimated by lactate dehyd...

متن کامل

Silibinin Attenuates Sulfur Mustard Analog-Induced Skin Injury by Targeting Multiple Pathways Connecting Oxidative Stress and Inflammation

Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 328 3  شماره 

صفحات  -

تاریخ انتشار 2009